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Abstract.--Both balanced and unbalanced data can be analyzed
for variance component estimation with Modified Maximum Likelihood
estimates in a unified approach. Design efficiencies are evaluated
for the estimation of heritability using this methodology, assuming
knowledge of the variance components. Rules for obtaining efficient
randomized block designs are established. The effect of number
of blocks, plot size, number of families, variance on family size
and total number of observations on design efficiency is examined
across the range of heritability and under 100%, 90%, 80% and 60%

survival.

Additional keywords: Modified Maximum Likelihood, Design allocation

rules.

INTRODUCTION

One of the problems that the experimenter faces in forestry designs for
the estimation of means and also variance components is the use of large
blocks in balanced experimental designs. Large blocks necessitate employment
of either a restricted set of environments where small plot variances can
be found or the inclusion of block-type variation among plots within blocks.
In this latter situation, the error in estimating family means is increased,
effectively decreasing heritability.

Anderson (1975, 1981) and others suggest and evaluate intentionally un-
balanced designs for the estimation of variance components. These planned
unbalanced designs allow for the redistribution of the degrees of freedom
to the variance components of interest. Various unbalanced two-way designs,
useful for forest genetics trials of half-sib families with small randomized
blocks, are also possible to design (McCutchan 1985).

A complicating factor in most forestry experiments, and one which makes
design evaluation difficult, is that some level of unplanned loss occurs in
a genetic trial subsequent to its establishment. Roughly 10% loss occurs

in loblolly pine (Pinus taeda L.) genetic trials after one year of field
growth, with up to 30% loss occurring by age 10, depending upon the incidence

of fusiform rust (Cronartium quercuum f. sp. fusiforme) (R. J. Weir, pers.
comm.). The efficiency of a design for the estimation of particular variance
components or functions thereof, under states of loss, is of consequential

interest.
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The analysis of unbalanced data--either planned or unplanned unbalance--
is therefore important for two reasons: (1) after an experiment is completed,
an efficient estimator is needed and (2) before an experiment is conducted,
designs need to be analyzed for the possible efficiency with which parameter
estimates will ultimately be made (Namkoong 1981). Unfortunately, the most
commonly used analytical procedure, namely Henderson's Method 3 (1953), is
ambiguous as to which sum of squares is most appropriate; such estimators
retain only their unbiased property with unbalanced data. The maximum likeli-
hood type estimators have been known theoretically, but have not been avail-
able practically. Giesbrecht (1983) has written an efficient algorithm by
which Modified Maximum Likelihood (MML), Maximum Likelihood (ML) and MInimum
Norm Quadratic Unbiased Estimates (MINQUE) can be computed. The MML approach
is used for the remainder of this paper. The MML estimates, for which nor-
mality is assumed, are chosen because of their desirable properties regardless
of the state of balance in the data. The estimates maximize the likelihood,
use the same information as the full ML estimates do and account, in some
sense, for the estimation of fixed effects; with balanced data, MML estimates
are also those obtained through the analysis of variance (AOV), which is not
true for ML estimates. The MML estimates are obtained by iterating the
MINQUE. The MML method is a unified approach to the estimation of variance
components and/or for comparing design efficiency.

The objective of this paper is to compare design efficiencies of planned
balanced and unbalanced designs for the estimation of heritability (h'). The
unbalanced designs allow for the inclusion of a large number of families in
relatively small blocks. The variance of the estimate of h 2 (var(h 2)) from
each design is compared to other designs across the range of h 2 and with 10%,
20% and 40% random loss of individuals. Design efficiency is examined over

the range of h 2 to indicate the quality of the design at any level of realized

h 2 or for multiple traits which may have different h 2 in the same experiment.
The design structure studied is a randomized block design on one location;
the treatments are unrelated half-sib families using either single-tree or
two-tree contiguous plots. The variance components are assumed known which
enables calculation of the variances of the variance components. An overview
of the results from McCutchan et al. (submitted) and McCutchan (1985) is pre-
sented.

METHODOLOGY

The notation and the computational methodology for Modified Maximum Like-
lihood follow Giesbrecht's (1983). His procedure for variance component esti-
mation is written as a temporary Statistical Analysis System (SAS') program
entitled Procedure MIXMOD.

where Y is the column vector of n observations; p is the overall mean; U B , OF

and U
P
 are design matrices pertaining to block, family and plot effects, re-

spectively, with all elements equal to zero or one (where there are b blocks,

f families and s filled combinations of the families and blocks); for
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The effect of block size on design efficiency is illustrated in Table
1 for the 100-family single-tree plot (STP) design with 1000 observations.
The ratio of the var(h2) from the 20-block block design is less than that
from the 40-block design across the range of h z . The larger block design

is uniformly more efficient than a design with more smaller blocks, given
the same set of variance components.

The effect of random loss on such a comparison is shown in Table 2 for
h 2 = .33. The ratio decreases with loss indicating that the larger block
design is better buffered to loss. This is true also across the range of h

2

The specifics for other comparisons of the block effect are given by McCutchan
(1985).

The initial motivation for examining the usefulness of smaller blocks

was the observation that smaller homogeneous sites are more frequent than

larger homogeneous sites. In these comparisons designs have been examined
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for the same set of variance components over the range of h 2 and a range of
random loss, regardless of block and plot size. The designs with larger blocks
are 2% to 3% more efficient than those with 25-tree plots, and are better
buffered to loss, given the same set of variance components. The practical
application of these results includes consideration of the frequency at which
these larger sites can be found. For a fixed n, fewer larger sites would
be required than small sites; whether b large blocks could be found for a
given site type, of course, depends upon the site. Considering the use of 20
blocks, the results show that by using designs with blocks half the size,
a 2% to 3% loss in efficiency is incurred. (The loss in efficiency indicates
the increase in var(h

2 ) in having used 40 blocks versus 20 blocks). This

cost in efficiency has to be balanced against the cost of obtaining and main-
taining half as many blocks, each of twice the size. This latter cost may
include not only difficulties in locating such blocks, but also bias in
representing planting sites.

The effect of plot size on design efficiency is illustrated in Table 3
with the comparison of a single-tree plot (STP) design to a two-tree plot
(TIP) design given 100 families, 20 blocks and n=1000. 2The STP design is
more efficient than that with TTP across the range of h (Table 3), with the
advantage in efficiency at 100% survival decreasing with h2. The STP design
remains more efficient with the imposition of random 10%, 20% and 40% loss
(Table 4).

Epp is the ratio of the var(h 2 ) from the TTP design divided by that from
1/ 2

the STP design.

The premise of using a TTP design is to protect the data set against
loss of plots. An AOV can be used for balanced data on a plot mean basis.
Loss of plots is not a computational or interpretative obstacle with the MML
methodology. There is a statistical cost to using TTP, as observed here,
which even at that fails to insure plot survival.

The large number of small family design is more efficient for 100% sur-
vival and high heritabilities than the small number of large family design
(Table 5, E f=50). This result is reversed for low heritabilities, where the
larger family design is more efficient. The effect of random loss on the
design efficiency is given in Table 6by E f=50 based on 10%, 20% and 40% ran-
dom loss. At each h 2 given, the var(h 2 ) from the 50-family design increases
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less than that from the 100-family design. The buffering capacity of the

design to loss is greatly influenced with these size differences in families,

there being roughly twice as much buffering capacity at h 2 = 1.0 for the

50-family design compared to the 100-family design, with this difference de-

creasing with h
2 . This greater buffering capacity with 50-family designs

is reflected in a decreasing E f=50 with loss. The 50-family design, with

this large difference in buffering capacity, becomes more efficient with 10%

loss at h = .33 in contrast to the block or plot effects. In neither of

these designs are families lost through random loss of individuals.

The implications for design recommendations are that STP and large blocks
provide low var(F

2 ) across the range of h 2 , but that the family size that
should be employed depends on the heritabilities of interest. The 100•family
design is more efficient across a large portion of the range of h 2 . If design
allocations included only balanced designs, this efficient 100-family, 20-block
design would not be a viable alternative. If all the traits of interest have
low heritabilities, for example, less than .2, then a 100-family design would
not be the most efficient design to use. The 50-family design would be more
efficient in this range and have greater buffering to loss.

The effect of variable family size in contrast to equal family size on
design efficiency is illustrated in Table 7 for 100 families of average size
10. The equal family size design i s more efficient at h 2 > .33 than the vari-
able family size design at 100% survival. The variable family size design
is more efficient below this level of h 2 , increasingly so as h 2 decreases.
These results confirm the suggestion (McCutchan et al. submitted) that in-
creased variance on family size might result in increased efficiencies for
low h 2 . They found that for 100 families of average size 10, the design with
var(fs) = 7 based on a binomial distribution with mean 10 was 2% less efficient
at h 2 = 1.0 than the equal family size design. The variable family size design
became more efficient at .25 > h > .21 than the equal family size design,
having a var(h 2 ) 6% less than that of the equal family size design at h Z

 = .02.
Variance of family size equal to 60 is examined here. The variable family
size design is less efficient at h 2 = 1.0, 21% higher var(h 2 ), and more effi-
cient at h 2 = .02, 35% lower var(F 2 ), than the equal family size design.
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In addition to the 100% survival case studied by McCutchan et al. (submitted),
the effects of 10%, 20% and 40% random loss on this comparison are given
(Table 8). The variable family size design is better buffered to loss at
h ritabilities other than 1.0. The buffering is such that with 40% loss at
h = .33, the variable family size design becomes more efficient.

The variable family size effect on design efficiency is an extended ver-
sion of the family size effect. Use of variation on the family size effec-
tively increases the average family size through an asymmetric effect of the
larger families. The deliberate use of variable family size can be viewed,
consequently, in a similar light as family size, in that its use depends upon
the portion of the range of h in which interest in estimation lies. If family
sizes are unequal due to differential fecundity or survival, then for an aver-
age family size a variable family size design will actually be more effi-
cient at the lower range of h 2 than an equal family size design.

A general comment can be made concerning n=1000 and n=500 designs in
relationship to the criterion. Only at the 60% survival level for either
h = .18 and/or h 2 = .02 are var(h 2 ) values from the 1000-observation designs

greater than the criterion. However, values from the 500-observation deigns
are generally greater than the criterion for all levels of survival at h =
.33, .18 and .02.

As an example of evaluating a given design for the estimation of h2,
h 2 and var(h 2 ) are estimated from a North Carolina Forest Service installed
American sycamore (Platanus occidentalis L.) mother tree trial. The experi-
ment, located in McDowell County, N.C., has 7 blocks, 30 half-sib families
in 10-tree row plots and a total of 1866 surviving trees (89% survival).
Variance components were estimated on eight-nar-old height data (ft.), con-
verging in one iteration: h2 = .25 and vâr(h e ) = .01. The estimated variance
on h is less than that suggested by the standard, namely .016. The results
of the reearch show that for a design established primarily for the estima-
tion of an equivalent level of var(h) can be obtained with half as many
total observations as in this trial.
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CONCLUSIONS

Utility of efficient Modified Maximum Likelihood estimators is afforded
by recent computational methodology. Both balanced and unbalanced data can
be analyzed for variance component estimation in a unified approach. Design
efficiencies are evaluated for the estimation of heritability using this
methodology and assuming knowledge of the variance components. Rules for
randomized block design allocation are established based on using the same
set of variance components regardless of block, plot or family size. Single-
tree plots in large blocks are recommended if the plots within blocks have
small homogeneous variances--smaller blocks if the above is not possible.
Recommendation of a particular family size depends on the portion of h 2 range
in which estimation interest lies. Five hundred observations are insufficient
to achieve the set standard on estimating h 2 . One thousand observations will
achieve this standard if survival is at least 80%. The rules indicate that
there is not one design allocation which will uniformly provide a low var(h2)
across the range of h2.

The research has based design efficiency on the estimation of h 2 . Herit-
ability is but one function of the variance components; the methodology is
laid out for the examination of other functions of variance components. This
sort of a priori examination of design efficiency offers the experimenter
a strong tool in achieving experimental design objectives.
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