Chairman: Gerald R. Stairs

NATURAL VARIATION IN CATKIN AND FRUIT CHARACTERISTICS OF YELLOW BIRCH

Knud E. Clausen¹

Yellow birch (<u>Betula alleghaniensis</u> Britt.), an important hardwood species in northeastern and north-central United States and in eastern Canada, produces valuable timber and is therefore a logical candidate for genetic improvement. Basic to any improvement program, however, is an understanding of the variation pattern in the species.

In 1963 the Institute of Forest Genetics, Rhinelander, Wisconsin, initiated a study of natural variation in yellow birch. The present paper is based on a portion of the material collected for this study and will only be concerned with phenotypic variation in catkin and fruit characteristics.

METHODS

The study material was assembled in 1963 and 1964 from throughout the range of yellow birch (fig. 1, table 1) with the generous assistance of many cooperator: in the United States and Canada. Fruiting catkins were collected from 7-15 tree sin each stand (table 1). The catkins, 25 or more from each tree, were kept separate by trees. Five catkins from each tree were randomly selected for measurements.

Since the catkins varied greatly in degree of ripeness and some had begun to disintegrate upon arrival in Rhinelander, dimensions of intact catkins could not be measured. Instead, the bracts and fruits² were removed, and the length of the central axis, or rachis, of the catkins was measured. One bract and one fruit were randomly selected from near the center of each catkin. Bract characteristics measured (fig. 2) included: length, base length, width, base length as a percent of total length, and length/width ratio. Fruit characteristics measured were: length and width of nutlet (excluding the wings) and length/width ratio.

RESULTS AND DISCUSSION

Only mean rachis and bract length for 52 collections and mean fruit length for 53 collections are shown in table 1. These three characteristics were chosen as examples because rachis length is uncorrelated with all other characteristics, and ract length is only weakly correlated with fruit length (r = .44). Since bract length is correlated with bract base (r = .83) and bract width (r = .75), the data for the other bract characteristics are not shown. The three fruit characteristics are also correlated with each other, particularly fruit length and length/width ratio (r = .78); hence, only fruit length is included in the table.

¹ Plant Geneticist, Institute of Forest Genetics, North Central Forest Experiment Station, Forest Service, U.S.D.A., Rhinelander, Wisconsin.

² Birch fruits are winged nutlets but are commonly called seeds.

Stand	State or	Degree	es of	Elev.	No.	Len	gth (mm)
no.	Province	Lat. :	Long.	(ft.)	trees	Rachis :	Bract	Fruit
3243	Newfoundland	47.2	53.4	50	11	15.8	5.5	2,65
3244	NewTorrand	48.6	58.2	400	9	15.2	8.0	3.41
3241	Nova Scotia	46.6	60.5	100	10	17.8	7.5	3.04
3063	11	44.1	65.8	350	10	19.1	8.6	3,43
3066	New Brunswick	47.4	65.2	300	10	18.4	8.6	3.37
3067	()	47.5	67.4	925	9	10.6	7.8	3.47
3001	Prov. of Guebec	49.2	65.1	300	8	18.0	7.9	3,26
2998		48.2	70.2	1000	14	17.1	7.6	2.97
2997		47.0	70.3	400	12	16.6	8.7	3.31
2999	11	47.4	72.6	1000	15	16.4	8.1	3,16
3000	н	47.5	75.0	1500	15	18.0	8.3	3.32
3002	Ontario	45.1	76.9	1000	10	13.6	7.7	3.01
3002	Unterito	46 1	79.0	1000	10	13.7	6.6	2.84
3003		46.7	79.6	1000	10	15.7	8.4	3.14
3311		45.0	81.4	625	10	21.9	8.0	3.22
3309		47.5	84.8	1000	10	17.1	6.4	3.35
	Ma face	44.0	60 G	250	11	17 4	8 2	3.15
2977	Maine	44.8	70.0	1000	14	18.9	8.6	3 46
2956	an in the second shift in a	43.1	70.9	1000	15	15.3	77	3 32
2985	New Hampshire	44.0	71 4	1200	12	18.0	7.0	3 51
2986		45.5	11.4	1050	10	10,0	0.0	2.20
2982	Vermont	44.7	72.6	1250	13	17.0	8.3	3.39
2971	Massachusetts	42.7	73.2	1610	15	18.0	8.3	3,32
2980	New York	44.2	74.9	1620	12	15.8	7.9	3,28
2996		42.5	74.2	2100	8	15.7	7.8	2,91
2976		42.3	77.3	1300	10	17,5	7.8	2.85
2979	Pennsylvania	41.3	76.3	2300	10	19,6	8.4	3.76
3312	u	41.6	78.7	1800	12	18.2	7.6	3.44
2969	West Virginia	39.0	79.7	2200	10	16.3	8.7	3.45
2970	Virginia	37.9	79.1	2300	11	17.3	8,0	3,37
3299		37.8	79.1	3000	11	19.0	8.7	3.24
2959	North Carolina	35.7	82.3	5160	10	15.6	7,9	3.62
2973	Georgia	34.8	83.8	4700	10	15.4	7.6	3.42
2953	Tennessee	35.2	85.7	1740	12	20.9	8,3	3.10
2954	n	35.7	85.3	1420	11	19.5	7.3	3,35
3294	Kentucky	36.9	82.9	3600	10	18.4	7.4	3.53
2955	Ohio	39.5	82.5	830	10	18.5	9.7	3.53
2958	Indiana	38.3	86.5	700	7	25.3	9.0	3.54
2983	Illinois	41.9	89.4	680	10	26.4	7.8	2.85
3295	Iowa	42.4	93,1	1050	10	23.3	8.2	3.16
2961	Michigan	45.0	85.0	1000	10	18.0	7.7	3.21
2960	-0	45.9	84.8	625	10	15.3	7.9	3,08
2978		46.7	87.9	1675	11	16,4	8.0	2,86
2987	n	47.0	88.7	1250	10		/	2.98
2968	Wisconsin	46.5	92.1	1150	15	18.5	8.4	3,21
3298	**	45.7	89.0	1710	10	20.4	9.0	3,39
3297		44.5	90.4	1100	10	20,6	8.8	3.13
2962		44.9	87.2	600	10	18.0	8.0	3,21
2963		43.1	88.4	900	15	21,2	8.2	3.39
2964	Minnesota	44.2	94.1	800	12	19.4	8.2	2.88
2965		47.2	95.2	1480	10	21.7	6.4	2.99
2966	**	47.6	92.5	1700	10	18.5	0.3	3.10
2967	Tale Research	47.8	90.2	1400	10	18.2	0.5	3.02
4957	Mich.	47.9	99.1	750	10	20.0	0.1	4.88

Table 1.--Origin and mean rachis, bract, and fruit lengths of 53 yellow birch collections

1/ Only fruits were available from this stand.

Figure 1.--Natural range of yellow birch adapted from maps in Fowells (1965) and Dansereau and Pageau (1966) and location of collections. The open circle indicates a stand from which only fruits were measured.

Figure 2.--Key to bract measurements: Bl--length; Bb--base length; Bw--width. In addition, relative length of bract base (Bb/BL × 100) and length/width ratio (Bl/Bw) were calculated. Some idea of the variation in all characteristics can, however, be gained from table 2, which shows the range in stand means and overall means for each characteristic. While there is no obvious pattern in the variation of any characeristic, some

consistencies, which probably reflect the correlation between individual characteristics, are apparent. Wisconsin stand 3298, for example, not only has the longest bract base but also has a relatively narrow bract (large bract length/width ratio). Similarly, the stand from eastern Newfoundland (3243) has short and narrow bracts but short and relatively broad fruits. The Kentucky stand (3294), on the other hand, has relatively broad bracts with relatively short bases and narrow fruits.

Characteristic	Mean and standard error	Extreme stand means and their origi Maximum : Minimum			
		Mean :	Origin	: Mean :	Origin
Rachis length mm	18.0 ± 0.162	26.4	2983 111.	10.6	3067 N.B.
Bract length (Bl), mm Bract base (Bb), mm Bract width (Bw), mm Bb/Bl X 100 Bl/Bw	$\begin{array}{r} 8.0 \pm 0.052 \\ 5.5 \pm 0.041 \\ 5.9 \pm 0.038 \\ 68.7 \pm 0.300 \\ 1.36 \pm 0.009 \end{array}$	9.7 6.4 7.1 75.2 1.60	2955 O. 3298 Wis. 2956 Me. 2961 Mich. 3298 Wis.	5.5 3.5 4.2 54.9 1.22	3243 Nfld. 2966 Minn. 3243 Nfld. 3294 Ky. 3294 Ky.
Fruit length (Fl), nm Fruit width (Fw), mm Fl/Fw	3.22 ± 0.016 1.77 ± 0.007 1.84 ± 0.008	3.76 2.05 2.27	2979 Pa. 3244 Nfld. 3294 Ky.	2.65 1.57 1.54	3243 Nfld. 3294 Ky. 3243 Nfld.

Table 2.--Mean and range of stand averages for 9 morphological characteristics of yellow birch

While there are highly significant differences between stands in all characteristics measured (table 3), the within-stand variation is larger than the variation among stands in most characteristics. Only the relation of bract base length to total bract length, fruit length, and fruit length/width ratio had less variation between trees within a stand than among stands. The variation within trees was small for all nine characteristics. Galoux and Falkenhagen (1965), who studied variation in fruiting characteristics of <u>Acer pseudoplatanus</u> L. in Belgium, also found more variation between trees than between populations and little within-tree variation.

All catkin, bract, and fruit characteristics are either independent of or, at best, weakly correlated with latitude, longitude, and length of growing season at the location of the collections (table 4). Galoux and Falkenhagen (1965) similarly reported samara length of A. ps <u>eudoplatanus</u> to be uncorrelated with length of growing season and several other environmental factors. Catkin and fruit characteristics in yellow birch thus do not exhibit any obvious trends in geographic variation but instead appear to vary in a random manner. Although differences between trees in a stand and between various stands can be demonstrated, the catkin and fruit characteristics studied seem to be relatively uniform throughout the range of this species.

	Variance ratio (F)			
Characteristic	Among stands	Among trees within stands		
Rachis length	7.30	13.87		
Bract length (B1)	3.24	16.71		
Bract base (Bb)	2.58	12.88		
Bract width (Bw)	5.52	10.05		
Bb/B1 X 100	16.41	7.27		
B1/Bw	3.84	5.93		
Fruit length (F1)	8.13	5.27		
Fruit width (Fw)	3.61	9.33		
Fl/Fw	10.21	2.55		
Tabular F.Ol	1.52	1.15		

Table 3.--Results of analysis of variance for nine morphological characteristics of yellow birch

Table 4.--Correlation between catkin, bract, and fruit characteristics of yellow birch and environmental variables of collection origins

Characteristic	Latitude	Longitude	Length of growing season	
Rachis length	225	.474*	.425*	
Bract length (B1)	238	.058	.256	
Bract base (Bb)	095	031	.105	
Bract width (Bw)	306*	.057	.441*	
Bb/B1 × 100	.085	143	155	
B1/Bw	.150	009	232	
Fruit length (F1)	403*	120	.202	
Fruit width (Fw)	.198	344*	.221	
F1/Fw	548*	.008	.354*	

* = Significant at the 5% level.

CONCLUSION

This biosystematic study provides no evidence of either clinal or ecotypic variation in catkin and fruit characteristics of yellow birch. Absence of clinal variation in fruiting characteristics was also noted by Galoux and Falkenhagen (1965) who found only a slight tendency for samara length of A. <u>pseudo latanus</u> to decrease with increasing altitude in certain localities. More intensive studies of local variation are needed to determine whether some of the variation in these characteristics is associated with elevation or other factors of the environment. The apparent random pattern of variation would otherwise indicate that there is very little selection pressure on any of the characteristics studied in yellow birch.

Dansereau, P., and G. Pageau. 1966. Distribution geographique et ecologique du <u>Betula alleghaniensis</u>. Mem. du Jardin Botan. de Montreal 58, 56 pp.

Fowells, H. A. (Editor). 1965. Silvics of forest trees of the United States. U.S.D.A., Agr. Handbook 271, 762 pp.

Galoux, A., and E. Falkenhagen. 1965. Recherches sur la variabilite genecologique de l'erable sycomore (<u>Acer</u> pseudop<u>latanus</u> L.), en Belgique. I. La samare, les correlations et la croissance au stade infantile. Sta. Rech. Faux et Forets, Groenendaal, Travaux Ser. A, No. 10, 60 pp.