FIELD TRIPS TREE IMPROVEMENT PROJECT SCHOOL OF FORESTRY, UNIVERSITY OF MINNESOTA

D. M. Gunn Memorial Park

D. M. Gunn Memorial Park is located on the west side of Prairie Lake, about four miles north of Grand Rapids on State Highway 38. The park was established in 1956 by the Charles K. Blandin Foundation and was designed primarily for recreation. However, the north portion of the park was designated as a tree improvement research and demonstration area. The first outplantings were made in 1956.

Japanese Larch (*Larix Leptolepis*) Seed Source Study

This outplanting of seven Japanese larch sources was established in cooperation with Michigan State University in 1960 as a part of the North Central Region Forest-tree Improvement Project (NC-51).

Initial mortality of the 2-0 seedlings was high (46 percent) necessitating replacements with 2-2 stock in 1962 which resulted in high survival. A single border row of European larch (*L. decidua*) surrounds the plantation and a number of failed spots have subsequently been replaced with sources of native tamarack (*L. laricina*).

Height measurements have indicated significant differences among sources but no apparent relationship between growth and latitute, longitude, or elevation of parent stands was found. Such a random pattern of geographic variation is not unexpected sin-e the native range of the species is restricted to approximately 140 square miles on Honshu Island where it is found in small discontinuous populations.

Several trees were damaged or killed by sunscald in the winter of 1967-68 and Japanese larch is susceptible to the endemic larch sawfly (*Pristiphora erichsonii*) which was found and controlled in the plantation during the current season. In spite of these shortcomings the rapid growth of Japanese larch gives it considerable potential for use in Minnesota.

White Spruce Seed Source Study

This test plantation was established in 1962 in cooperation with the North Central Forest Experiment Station of the USDA Forest Service. The study consists of 25 white spruce seed sources and a single Itasca County black spruce source. The stock was 2-2 when planted. Mortality has been less than 1 percent.

Height growth of the sources represented clearly indicates that high latitude or high altitude short growing season sources (e.g., Alaska and Montana) are the slowest growing. Best growth has been made by an eastern Ontario source (Beachburg, Ontario) which was significantly better than the next best which are local (Itasca Co.) sources (table 1).

The plantation has been sprayed annually in late June or early July during the past several years to control the yellow-headed spruce sawfly *(Pikonema alaskensis)*. This insect is a locally serious pest of open-grown white spruce in this area. A duplicate of this plantation established at Cloquet where no control was practiced indicated no apparent variation in susceptibility among the white spruce sources. The black spruce plots in this planting were, however, ignored by the sawfly.

Forest Tree Improvement Arboretum

During the period 1956-57 the School of Forestry established a Breeding Arboretum at Gunn Memorial Park. The collections consist chiefly of seed sources of *Populus* and *Betula* species, including varieties and hybrids and serve as a reservoir of potentially useful genes.

North Central Experiment Station Nursery University of Minnesota

A portion of the North Central Experiment Station Nursery has been used as the principal propagation area of the Tree Improvement Project since 1955. The Nursery is under the supervision of Professor William H. Cromell.

Dwarf Jack Pine (*Pinus banksiana*) and Eastern White Pine (*Pinus strobus*)

This study of seed-transmitted dwarfism in jack pine and white pine is being carried on in cooperation with Albert G. Johnson of the University's Horticulture Department, St. Paul Campus.

Table 1.—Gunn Park, Plantation B (1962) white spruce seed sources (ranking by Duncan's Multiple Range Test based on height in autumn 1966 at 9 years from seed)

NCFES:				
Acq. :	Seed Source Location :		Height	
No. :		-		
		<u>cm.</u>		
1663	Beachburg, Ontario	140		
1647	Third River Rd., Itasca Co., Minnesota	127		
3512	Itasca Co., Minnesota	125		
1644	Adirondack Mountains, New York	119 -		
1669	Grand Rapids, Minnesota	119		
1662	Ashley Mines, Bannockburn, Ontario	117	111	
1645	Monico, Wisconsin	116		
1649	Coos County, New Hampshire	111		7
1655	Bangor, Maine	111		
1660	Maniwaki, Quebec	111		
1676	Huron National Forest, Michigan	110	- 1	
3511	Itasca Co., Minnesota	105		
1631	Spruce Woods Reserve, Manitoba	104		
1659	Edmonston, New Brunswick	104		
1661	Chicoutimi + St. Joan's City, Quebec	104		
1687	Kakabeka Falls, Ontario	101		1 1
1664	Flin Flon, Manitoba	84		
1628	Black Hills, South Dakota	83		
1686	Moosonee, Ontario	83		
1658	Lake Melville, Labrador	71		
1665	Stony Rapids, Saskatchewan	66		
1677	Summit Lake Region, Fort McLeod, B.C.	61		
1657	Port Hope Simpson, Labrador	57		
1654	Fort Yukon, Alaska	42		
1653	Gerstle, Alaska	41		
1630	Lewis & Clark National Forest, Montan	a 39		

1/ All seed sources are white spruce except 3512 which is black spruce.

A normal-dwarf ratio of 1:1 characterizes the segregation ratio of plants grown from open pollinated witches' broom seed of jack pine and white pine (table 2). In the absence of any evidence that the witches' brooms tested were due to a pathogen, the conclusion has been made that the observed segregation was genetically determined since such a 1:1 segregation ratio was that to be expected from a simple Mendelian dominant gene for dwarfism when fertilization is accomplished by normal pollen. This hypothesis is supported by the observed total absence of male strobili on the brooms studied.

In all segregating populations the distinction between normal and dwarfed trees was sufficiently clear to permit classification during the first season of growth. Aside from the gross differences characterizing dwarf and normal seedlings, there is a distinct difference between the progeny of different brooms. These differences are reflected chiefly in the height and crown density of the seedlings.

Blackberry Experimental Area

This experimental area, established by the Blandin Paper Company in 1960, is located about 5 miles southeast of Grand Rapids on the south side of U.S. Highway 2.

Scotch Pine Seed Source Study

Scotch pine (*Pinus sylvestris*), a native tree of Europe and Asia, has the most extensive natural distribution of any pine species in the world. It is the most important pine species throughout most of its natural range, especially in northern Europe, where it is used chiefly for lumber, piling, and pulpwood. Scotch pine has been grown in Minnesota for many years as an ornamental and in recent years has gained wide acceptance as a Christmas tree.

The seed source outplanting at the Blackberry Experimental Area was established in 1962 with 2-1 stock supplied by Michigan State University. The planting represents one of the approximately 50 similar outplantings of Scotch pine seed sources in the North Central Region of the United States established under a Cooperative Regional Research Project (NC-51) sponsored by the U.S. Department of Agriculture. A summary of results based on measurements made in September 1966 (at which time the trees were eight years old from seed) is shown in table 3. The results may be briefly summarized

Table 2.—Chi-square tests of goodness of fit to a 1 : 1 ratio for normal - dwarf segregates of open-pollinated jack pine brooms

Broom No Year tested - Nursery (N) or Greenhouse (GH)	: Sui	vival	Normal 1 seedling	Dwarf 1-0 seedlings	Chi- Square	 Probability (1 d.f.) greater than:
	Per	cent	Number	Number		
1-1957-N		-	42	48	0,400	0.50
1-1961-N 1/	-	-	146	132	,705	.30
1-1962-GH	5	55	120	98	2,220	.10
2-1962-GH	7	15	73	77	,107	.70
3-1962-GH		0	81	59	3.457	.05
4-1962-GH		38	68	67	.007	.90
5-1962-GH	t	7	55	59	.140	.70
1-1962-N -	-	51	240	269	1.652	.15
2-1962-N	1	54	128	143	.830	.30
3-1962-N	1	52	125	133	.248	.50
4-1962-N	(38	181	158	1.560	.20
5-1962-N	(51	136	168	3,368	.05
All tests:			1,395	1,411	,091	.70

Combined samples of seed from broom No. 1 collected in different 1/ years.

Table 3.—Relative height of Scotch pine varieties in autumn 1966 (8 years from seed) Blackberry Plantation A (1962)

201 A.S. 2 (2013)	: Mea	n height 1/	:	Percent of	1	
Variety and seedlot	: in	September	:	Plantation	1	Origin
numbers	:	1966	:	mean	:	
	<u>Cm</u> .	In.				
North European and Siberian varieties						
1. Altaica: 227	111	44		73		Altai Mts.,Siberian USSR
 Rigensis: 223, 224,550,3513 	154	61		101		Latvia, Sweden
 Septentrionalis 201,222,228, 230,273,274, 276,521,522, 543,544,545 	126	50		82		Norway, Sweden, Finland
Central European varieties						
, arrested						
4. Borussica: 209	186	5 73		122		Northeast Germany
5. Haguenensis: 252, 253	179	9 71		117		West Germany
6. Hercynica: 203,208,248, 305,306,308, 312	18	7 74		122		Southwest Germany, Czechoslovakia
7. Polonica: 211, 317	19	8 78		130		Poland
South European						
varieties						
8. Iberica: 219	8	6 34		56		Spain

by stating that in terms of growth rate and survival the best adapted sources for north central Minnesota are of Central European origin. Spanish sources are not frost hardy in this area.

Extreme northern sources are slow growing and from the Christmas tree growers' standpoint are undesirable because of a foliage color change from green to various shades of yellow in autumn.