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Abstract

White spruce is a boreal conifer with a transconti-
nental range and intermediate shade tolerance that 
thrives in mixed stands. The species has high genetic 
variation, low population structure, and can tolerate 
moderate transfer distances with minimal maladapta-
tion effects. White spruce has a tendency to break bud 
early in the spring and, as such, is susceptible to dam-
age from early spring frosts. Spruce budworm is the 
most significant pest of white spruce. Seed collection 
areas should be developed from sources with a range 
of budbreak times and growth habits to maximize 
genetic diversity. White spruce is a good candidate for 
assisted migration because it is expected to experi-
ence a range shift, is generally unpalatable to browse 
from white-tailed deer, and can be transferred long 
distances with a low probability of maladaptation.

Introduction

White spruce (Picea glauca Moench [Voss]) is a 
transcontinental, long-lived, boreal conifer that grows 
on a wide variety of sites exclusive of stagnant, wet, or 
excessively dry sites. Spruce trees provide habitat for 
small mammals and birds and are generally unpalatable 
to browse by white-tailed deer (Odocoileus virginianus 
[Zimmerman]). White spruce is valued in com-
mercial forest markets for its use as pulpwood and 
sawlogs. In the United States, white spruce occurs 
across the Lake States (Michigan, Minnesota, and 
Wisconsin), northern portions of New York, Ver-
mont, New Hampshire, and across Maine, but most of 
its range resides in Canada. White spruce likely had 
three glacial refugia (two in eastern North America 
and one in the west) based on evidence of genetic di-
versity and endemic haplotypes associated with each 
refugium (de Lafontaine et al. 2010). Two refugia 

based in eastern North America correspond to areas 
west and east of the Appalachian Mountains. White 
spruce from areas west of the Appalachian Mountains 
migrated northwards towards the Great Lakes, where-
as populations east of the Appalachians migrated into 
New England and northwards into eastern Québec, 
Labrador, and the Atlantic Provinces (de Lafontaine et 
al. 2010). 

White spruce is generally a minor component of north-
ern forests and has low importance values. It rarely 
regenerates in an even-aged stand except when such 
conditions are created artificially through management. 
White spruce has intermediate shade tolerance and 
thrives in mixed stands, especially beneath an over-
story composed of quaking aspen (Populus tremuloides 
Michx.) and/or paper birch (Betula papyrifera Marshall) 
(Gradowski et al. 2008, Man and Lieffers 1997). The 
overstory of these northern hardwoods may provide 
protection from radiational cooling on quiescent seed-
lings or seedlings that have broken bud in the spring 
(Groot and Carlson 1996) (figure 1). White spruce 
requires fewer growing-degree days to leaf out in the 
spring than other taxa (Lu and Man 2011, O’Reilly 
and Parker 1982, Rossi and Isabel 2017) rendering it 
more vulnerable to deleterious effects of early spring 
frost than trees with buds or flowers that emerge later 
in the season. In addition, female conelets emerge 
early in the spring which can increase frost risk to 
flowers and new shoots that leaf out early (figure 2). 
White spruce regenerates primarily from seed, but 
may regenerate by layering, in which lower branches 
that reach the soil form new roots (Katzman 1971, 
Stone and McKittrick 1976).

White spruce is intolerant to fire but regenerates well 
on disturbed sites with mechanically exposed mineral 
soil (Gärtner et al. 2011) or on sites immediately post-
fire (Purdy et al. 2002). Additional details about this 
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species may be found in the USDA Natural Resources 
Conservation Service plant guide (Nesom and Guala 
2003). The Climate Change Atlas predicts that white 
spruce habitat will not change greatly, but additional 
warmth will likely stress the species, especially along 
its southern range edge (Peters et al. 2020).

Genetics

White spruce seeds are lightweight, winged, and 
rapidly released when cones dehisce, usually in 
August (figure 3). Cones ripen and mature in one 
growing season as opposed to cones of Pinus spe-
cies that require two years to mature. Mobile seeds 
and wind-dispersed pollen contribute to high rates 
of gene migration (O’Connell et al. 2006), result-
ing in high genetic diversity across the species’ 
geographic range (Furnier et al. 1991). Genetic 
variation is low among populations (stands) and 
reflects high rates of migration: FST values (a ratio 
of genetic variation between sub-populations and 
the total population) range from as low as 0.006 to 
0.007 (Cheliak et al. 1988, Namroud et al. 2008) 
to as high as 0.113 along the northern range edge 
in Québec (Tremblay and Simon 1989). This high 
genetic diversity confers a strong capacity to adapt 
to local conditions. Provenance (geographic origin) 

Figure 1. A sapling of white spruce grows vigorously underneath a quaking aspen 
overstory. (Photo by C. Pike, 2004)

Figure 2. Spruce trees tend to leaf out earlier in the spring than other plants. Early spring frosts can damage female inflorescence (immature cones in photo) or developing 
shoots. (Photo by C. Pike, 2009) 
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effects are often insignificant and overshadowed by 
differences among trees within a provenance (Li et 
al. 1993). In other words, within any single prove-
nance, trees with a variety of traits and habits can be 
found. White spruce is not known to hybridize with 
other Picea species in the wild. In summary, white 
spruce has high gene flow, high genetic variation, 
and greater differences among trees within a stand 
than among stands. 

Clinal variation across the landscape is general-
ly weak for white spruce, with steepest gradients 
occurring between eastern and western populations 
as observed in range-wide provenance trials (Khalil 
1985, Sebastian-Azcona et al. 2019, Wilkinson et 
al. 1971). Sharp differences between eastern and 
western populations may be attributable to distinct 

refugia that were isolated during prior glaciation. 
In the eastern part of the range, differences among 
populations attributable to latitude of origin are 
generally weak but may be detected for some traits 
(Lesser and Parker 2004; Li et al. 1993, 1997; Lu 
and Man 2011; Lu et al. 2014).                                                                                         

White spruce trees have determinate growth and 
require a period of deep chilling (cold tempera-
tures below freezing threshold) for shoot growth 
to resume after buds are set in the summer. Young 
seedlings may exhibit indeterminate growth, a habit 
that ceases by the fourth year (Nienstaedt 1966). 
Phenology traits (time to budbreak and budset) are 
important predictors for growth. After the chilling 
requirement has been met, warm temperatures in 
the spring (tabulated as growing degree days) lead 

Figure 3. Immature cones ripening on a tree at a seed orchard. Unlike cones of the Pinus genus, spruce cones only require one year to develop. A cut test of the cone is 
required to determine ripeness. Once the cone dries, the seed is released in late summer. (Photo by C. Pike, 2006)
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Table 1. Summary of considerations for moving white spruce seed.

White spruce, Picea glauca Moench

Genetics
• Genetic diversity: high

• Gene flow: high

Cone and seed traits

• Small, winged seeds

• 135,000 to 401,000 seeds per pound 
    (297,000 to 882,200 per kg)

• Non-serotinous cones

• Seeds are released in late summer

Insect and disease
• Spruce budworm (major), sawfly (minor) 

• Needlecasts can afflict spruce

Palatability to browse • Low risk of herbivory from white-tailed deer

Maximum transfer distances

•  White spruce can handle relatively long 
transfer distances relative to other taxa: 

   –  Up to 200 mi (322 km) south  
    to north  

   –  Up to 300 mi (483 km) east  
    to/from west  

 • Sources from 1.0 to 1.5° latitude  
    south are generally superior to local or 
    northern sources

Range-expansion  
potential

• Spruce is likely to experience a northward 
range-shift but may persist along its south-
ern range edge because of high genetic 
variation and low deer palatability

to budbreak after a threshold is met (Lu and Man 
2011, Nienstaedt 1966). The calendar date for bud-
break timing varies annually by 1 or more months 
depending on spring temperatures (Pike et al. 2017). 
The amount of warming needed to induce budbreak 
is under strong genetic control (Lu and Man 2011, 
O’Reilly and Parker 1982). Even though budbreak 
time is highly adaptive, the trait exhibits weak 
clinal variation and no significant genotype-by-site 
interactions (Lesser and Parker 2004, Lu and Man 
2011). For example, genotypes with a tendency to 
break bud early were not associated with any single 
provenance and were consistent for families across 
multiple sites (Lesser and Parker 2004, Lu and 
Man 2011). This paradox–an adaptive trait that is 
not associated with its native location–is best ex-
plained by the excessively high gene flow in white 
spruce that precludes isolation and local adaptation. 
Changes in daylength are the primary trigger for 
budset and the onset of winter dormancy in the fall 
(Hamilton et al. 2016). White spruce is generally 
not affected by fall frosts because the buds are set 
by mid-summer. 

Seed Transfer Considerations

White spruce is a good candidate for assisted migra-
tion because of its extensive genetic variation and its 
capacity to adapt (Lu et al. 2014). In addition, white 
spruce is highly tolerant of long-distance seed transfer 
with large optimal breeding zones of 3° latitude (ap-
proximately 200 mi [322 km]) and 10 to 12° longi-
tude (Thomson et al. 2010). Mid- and northern popu-
lations grow in suboptimal conditions, and best seed 
sources generally originate from 1.0 to 1.5° latitude 
south of a site (Morgenstern et al. 2006, Prud’Homme 
et al. 2018, Thomson et al. 2010). 

Southern sources moved north to a common garden 
are more likely to experience budbreak delays rel-
ative to northern sources because of the extra time 
required to accumulate degree days (Blum 1988, 
Lesser and Parker 2004, Prud’Homme et al. 2018). 
Migration of seed across short distances, however, 
is unlikely to strongly influence budbreak time (Lu 
and Man 2011). Seed collection areas should be 
developed from sources with a range of budbreak 
times and growth habits to maximize genetic diver-
sity. Considerations for moving white spruce seed 
are summarized in table 1.

White spruce growth and survival can be correlated 
with weather conditions that occur during the active 
growing season. For example, tree growth (height 
and diameter) was related to maximum temperatures 
in May, June, and August across 6 sites in western 
Ontario (Thomson et al. 2010). Other studies deter-
mined that temperature and precipitation both con-
tributed to growth (Andalo et al. 2005, Lesser and 
Parker 2004). White spruce is relatively insensitive 
to nadir winter temperatures (minimum tempera-
tures in January, for example) (Lu et al. 2014) be-
cause it is hardy to -22 °F (-30 °C) by mid-fall and 
remains dormant until dormancy is released with 
spring warming (Sebastian-Azcona et al. 2019).
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Insects and Diseases

Spruce budworm (Choristoneura fumiferana [Freeman]) 
is indigenous to North America and is a highly de-
structive pest of white spruce across its range (fig-
ure 4). Budworm serves an important successional 
role by accelerating the demise of decadent stands of 
spruce and fir (Abies sp.) in northern forests. Silvi-
cultural practices that create monocultures of white 
spruce may help sustain populations of budworm and 
increase the vulnerability of managed forests to mortal-
ity (Blais 1983). Seed orchards that are tightly spaced 

can also be inundated with feeding during budworm 
outbreaks. Budworm outbreaks occur at approximate-
ly 40-year intervals (Blais 1983, Boulanger and 
Arseneault 2004), although intervals may be shorter 
if conditions favor the insects’ proliferation. The 
intensity and extent of outbreaks depend on myri-
ad site factors and can devastate timber resources 
(Gray and MacKinnon 2006). 

Spruce budworm adults lay eggs in the summer on 
host trees, and larvae overwinter as second instars. 
Upon emergence in the early spring, larvae disperse 
and feed on shoots, favoring trees with buds that 
have recently emerged from their sheath. Larvae 
that emerge from winter hibernation before new 
shoots are available as a food source must find 
sustenance on sub-par sources, such as older nee-
dles. Thus, synchrony with new shoot growth in 
host trees is imperative (Blum 1988) to ensure the 
survival of newly emerged larvae. The movement of 
seed sources from southern to northern locales will 
likely interact with the budworm (i.e., if budbreak 
is delayed, then it may evade infestation barring any 
other adaptations by the insect). 

Other insect pests that affect white spruce include 
yellow-headed spruce sawfly, (Pikonema alaskensis 
[Rohwer]) (figure 5) which can occasionally produce 
outbreaks (Katovich et al. 1995). Spruce budmoth 
(Zeiraphera canadensis Mutuura and Freeman) and 
spruce spider mites (Oligonychus ununguis [Jacobi]) 

Figure 4. Spruce budworm is the most economically important pest of white spruce 
across North America. The adult form is shown in this photo, but most damage 
occurs from feeding by larvae. (Photo by J. Warren, USDA Forest Service, 2011)

Figure 5. Yellow-headed sawfly is an occasional pest on white spruce foliage. (Photo by J. Warren, USDA Forest Service, 2011)  
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are minor pests and associated with open grown 
trees in largely urban settings. Pathogens associated 
with white spruce affecting weakened hosts include 
Rhizosphaera kalkhoffii and Stigmina lautii needle 
cast (Walla and Bergdahl 2016), Phomopsis canker 
(Phomopsis juniperovora), and Diplodia tip blight 
(Diplodia sapinea) (Stanosz et al. 1997, Stanosz et 
al. 2007). Rhizosphaera and Stigmina are also likely 
important pathogens, especially in plantations and 
along the southern edge of white spruce’s range. 
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