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Introduction

Depending on location and luck, natural gas rates have gone from less that CAN$ 3.00 to more than CAN$ 20.00/gigajoule
(Gj). Natural gas rates are currently around CAN$ 13.00/Gj, although industry “analysts” predict an increase. A gigajoule
is equivalent to the energy released by the combustion of approximately 30 L (8 gal) of gasoline. It is also equivalent to ap-
proximately 950,000 BTU, 0.165 barrels of oil, or 278 kilowatt-hours of electricity.

Energy as a proportion of greenhouse crop production cost is rising. This has sparked renewed interest in energy conser-
vation, alternate fuels, different growing facilities, new cropping systems, and so on. This article briefly touches on energy
conservation and provides a simple approach for evaluating alternate fuel sources.

Energy Conservation

Awareness of the purpose of energy—what forms are needed, when, and where—is required. Proximity of source to sink
is key, because efficiency can be lost during transfer. In greenhouses, the two basic heating system objectives are: (1) to heat
the growing plant so it can take advantage of available light during the day and process assimilates at night; and (2) to heat
the greenhouse environment to maintain a favorable vapor pressure deficit, facilitating plant transpiration and associated
evaporative cooling as well as internal nutrient transport.

Humidity control is a major cost in terms of energy consumption. If replenishing CO, is accomplished through venting,
this also becomes a major energy cost due to the associated heat loss. Options for management of both may be worth
investigating.

During seed germination, humidity (reduction) and CO, (injection) are not issues, but proximity of the heat source to seeds
is. Germination speed can be approximated using a Q,, factor of 2 for plant respiration (van Steenis 2009). Between 5 and 25 °C
(41 and 77 °F), germination speed (respiration rate) doubles for every 10 °C (18 °F). This should be weighed against the cost
of heating a growing facility. Starting with ambient outside temperatures, one can log heater-running time for each rise in
set-point temperature. This information can be used when deciding on heating set points given various outside weather con-
ditions (including both temperature and precipitation). Basically, if a 10 °C (18 °F) rise (between 5 and 25 °C [41 and 77 °F]) can
be attained for less than a doubling in fuel consumption, then it is economic to increase temperature (in terms of increased
germination speed and subsequent reduced crop cycle time). The added bonus is a more uniform crop. In fact, the higher the
price of fuel, the more economic it is!

Common sense heat conservation techniques abound. Sealing cracks, IR trapping and/or anti-condensate polyethylene films,
double polyethylene roofs, raising heating pipes higher off the ground, skirting benches, delayed heating until a facility is
full, pre-germinating, and so on, are just a few. Literature suggests the biggest gain is from installation of energy curtains.
(These have to seal well!) They add an insulating layer of air, reduce total air volume to heat, and limit long-wave radiation
loss from the crop. They are more cost effective when installed in gutter-connected greenhouses.

Alternative Fuels

Alternative fuels are intriguing, but it quickly becomes obvious that in order to “easily” take advantage of various options,
one needs to be working with a hot water heating system. Unit heaters only lend themselves to natural gas or propane, whereas
any fuel can be used to heat a boiler. Some fuels require investment in extra storage, transport, and delivery systems, as
well as waste removal. One interesting option is pellet fuel combustion technology, utilizing wood residues and agricultural
fibers. Wood pellets in British Columbia and switchgrass pellets in Quebec are two examples.
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When evaluating alternatives, consider the capital in-
vestment associated with the system technology as well as
the fuel price, how the biology of the growing system may
change, and don’t forget government regulations with respect
to waste disposal and air quality. Because the difference in
fuel prices determines the payback/economic feasibility, it is
imperative that fuels be compared on a dollar per gigajoule
or equivalent energy content basis.

Table 1 can be used to calculate the advantages and
disadvantages of various fuel types and heat sources in
a greenhouse. To use the table, select your current fuel
source and price. Move to the left side of the table to obtain
the equivalent price per gigajoule. Now choose a new fuel
source and its current price to you. How does it compare on
a dollar per basis? Realize it currently takes about 2.5 Gj of
energy/m? (0.23 Gj/ft?) of growing space to produce a forest
seedling crop. Knowing your total greenhouse area quickly
gives an indication of how much money the “switch” can
“make or break” you. If you are comparing to electricity, it
is important to realize that its output (heat) cost equals its
input (fuel) cost because it is 100% efficient. In other words,
switching from a gas/wood/coal boiler to an electric boiler
saves 15% in energy consumed regardless of its price.

Greenhouse Energy Consumption

An interesting example (from 2001 in British Columbia
and expressed in Canadian dollars) is a grower with 2,500
m? (26,900 ft?) of growing area on propane at $ 0.36/L ($ 1.38/
gal) using unit heaters (75% efficiency). This rate equals
$ 14.50/Gj input cost, which equals $ 14.50/.75, or $ 19.33/
Gj (heat) output cost. Electricity is $ 0.058/kWh or $ 16/Gj
input and output cost. The 2,500 m? x 2.5Gj/ m? x $ 3.33
gives the grower $ 20,812.50 in year 1 if a switch was made
to electric element unit heaters or boilers. If wood chips were
available at $ 5.00/Gj delivered, the difference in output cost
would be $ 19.33 — 5.88 = $ 13.45/Gj or $ 84,062.50 in year
1! This grower installed wood-fired boilers and hot water
piping under the benches.
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