
Effects of Fertilizer on Selected
Potential Plant Pathogens in
Bareroot Forest Nurseries

R.L. James
USDA Forest Service, Forest Health Protection
Coeur d'Alene, ID

Abstract
Soil-borne microorganisms, including potential plant pathogens, respond

to fertilizers and organic amendments. High levels of nitrogen usually result in
increases of Fusarium populations and more severe disease; organic nitrogen
sources encourage disease more than inorganic sources. Balanced nutrition of
nitrogen, phosphorus, and potassium helps reduce Fusarium diseases. Reduc-
ing soil pH and avoiding excessive fertilization may help control Phytophthora
diseases. Growers need to monitor disease and formulate fertilizer regimes
that do not initiate or aggravate existing disease problems.

Introduction
Populations of soil microorganisms vary widely in response to soil type,

moisture, and nutrients provided either by organic matter or by supplemental
fertilizer. In undisturbed soils, populations of microorganisms often reach a
balance because they are continually competing with each other for space,
moisture and nutrients. This balance may be disturbed by agricultural prac-
tices such as tillage, amendments with organic matter, pesticides and fertiliz-
ers, and cultivating certain plants. Under undisturbed soil conditions, potential
plant pathogenic fungi usually occur at relatively low populations, being
balanced by other soil microorganisms. However, populations may significantly
increase when soil balances are disturbed. If plant species susceptible to
pathogens are introduced after microorganism balances have been disturbed,
extensive disease may result.

Bareroot forest nurseries are agricultural crop systems. Extensive areas
may be sown with one or a few tree species. If these tree species are suscep-
tible to disease and potential pathogen propagules are present in soil in
sufficient numbers, losses may be severe. Ideally, seedlings should be grown
in soil where populations of pathogenic organisms are limited by competition
with nonpathogenic microorganisms (James et al. 1993). However, this
balance is often disrupted by necessary cultural activities which may favor
certain groups of microorganisms, including plant pathogens.

One important, necessary disturbance factor in forest nurseries is
amending soil with fertilizers required for proper seedling growth. Not all
added fertilizer is used by crop plants; much of it may provide food for
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resident microorganisms (Sadasivan 1965). In addition, some excessive

fertilizer may leach through soil and end up in groundwater.

Various forms of fertilizer and the nutrients contained in them affect

microorganisms differently (Sadasivan 1965). Increasing nutrient availability

may result in microorganism populations greatly expanding over relatively

short time periods. If stimulated microorganisms are potentially pathogenic

fungi, severe disease may result (Woltz and Jones 1981) even though fertilizer
may improve seedling vigor.

Although many potential plant pathogenic fungi may reside in forest

nursery soil, probably the most widespread and damaging group of pathogens

are in the genus Fusarium (James et al. 1991). These soil-borne pathogens are

responsible for several types of disease on many different conifer species and

are usually present at some level in most forest nursery soil (James et al.

1991). Fusarium-associated diseases have usually been controlled by pre-plant

soil fumigation (James 1989). However, alternatives to chemical soil fumiga-

tion are currently being developed because of the planned elimination of

methyl bromide as a fumigant and desire of growers to reduce pesticide use in

forest nurseries (James et al. 1994). Some potential alternatives will involve

changes in cultural operations to favor non-pathogenic soil microorganisms

(James et al. 1994, Stone et al. 1995). Since fertilizers potentially affect

microorganism populations, changes in fertilizer practices may become an

important part of integrated pest management strategies in nurseries.

Because of their widespread importance in bareroot forest nurseries, I

will emphasize fertilizer effects on Fusarium spp. and associated diseases. A

smaller portion will address potential effects on Phytophthora spp., another

important group of plant pathogenic fungi that affect some forest nurseries.

Because of the limited amount of research involving fertilizer effects on these

two groups of pathogens in forest nurseries, much of the discussion will

necessarily involve studies done on other agricultural cropping systems.

Effects on Fusarium Disease Severity

Many studies have concluded that high levels of nitrogen (N) fertilization
encourages disease development by Fusarium spp. (McClellan and Stuart 1947;

Sadasivan 1965; Woltz and Engelhard 1973; Woltz and Jones 1973a; Woltz
and Magie 1975). This has especially been shown for responses of F
oxysporum Schlect. (Jones and Woltz 1975; Woltz and Engelhard 1973; Woltz

and Jones 1973a, 1973b; Woltz and Magie 1975) and F solani (Mart.) Appel &

Wollenw. (Baker and Nash 1965; Maurer and Baker 1965; Papa vitas et al.

1968) to increasing rates of ammonium. Both nitrate and ammonium stimulate
disease of loblolly pine seedlings caused by F subglutinans (Wollenw. &

Reinking) Nelson, Toussoun & Marasas (Solel and Bruck 1989). Severe
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conifer seedling damping-off has traditionally been linked to succulent seed-

ling tissues enhanced by nitrogen fertilization (Tint 1945).
Organic nitrogen sources have been shown to favor disease more than

inorganic sources (Toussoun et al. 1960; Walker 1971; Warren and
Kommedahl 1973). Urea applied to tomato plants retarded wilt caused by F
oxysporum f. sp. lycopersici (Bloom and Walker 1955). However, urea applied
to bareroot Douglas-fir seedlings resulted in increased disease mortality

(Sinclair et al. 1975). For diseases caused by F oxysporum, nitrate, when

furnished as the principal nitrogen source, sometimes inhibited disease
development, but the inhibition was not as rate-dependent as for ammonium
(Woltz and Jones 1973a). Nitrate has also been shown to inhibit disease
caused by F oxysporum (Loffler et al. 1986a). In another study, Fusarium
inoculum cultured with ammonium was more virulent than that grown with

nitrate (Woltz and Jones 1973a). It has been speculated that supplemental
nitrogen not only provides a nutrient source for soil pathogens (Lopez and

Fergus 19 65; Solel and Bruck 1989; Stoddard 1947), but may also reduce
host resistance to pathogens (Martin et al. 1991).

Effects of nitrate and ammonium on disease are apparently related to

soil pH (Schuerger and Mitchell 1992); nitrate causes an elevation in soil pH,

whereas ammonium causes a reduction (Woltz and Jones 1981). Plants grown

in soil receiving nitrate plus lime had less disease than those receiving
ammonium plus lime (Woltz and Jones 1973a). Effects of lime and nitrate in
controlling Fusarium are most likely related to lowering the concentrations of

other nutrients in soil solutions, mostly phosphorus, magnesium, sulfur and

copper. Lacking these nutrients and iron, manganese, and zinc in adequate
amounts, Fusarium spp. are less likely to establish significant inoculum levels

in soil (Woltz and Jones 1981). In addition, different Fusarium spp. have
different pH optima for growth. For example, F proliferatum's (Matsushima)
Nirenberg optimum is 5.5, the pH optimum for F moniliforme Sheldon is 7.0
(Marts et al. 1995) and best growth and survival of F oxysporum occurs at pH
5-7 (Manandhar and Bruehl 1973; Oritsejafor 1986).

Several potentially-pathogenic Fusarium species survive in soil as

inactive resting structures called chlamydospores (Guerra and Anderson 1985)
which may persist and remain viable in fallow soil for two of more years

(Elmer and Lacy 1987). Chlamydospores require exogenous sources of carbon
and nitrogen to germinate (Cook and Schroth 1965; Davey et al. 1996;

Hendrix and Toussoun 1964), especially at higher spore concentrations
(Griffen 1970b). Ammonium may stimulate chlamydospore germination more

than nitrate sources (Cook and Schroth 1965; Loffler et al. 1986b). Nitrogen
also favors early penetration and subsequent pathogenesis of the host by

Fusarium spp. (Stoddard 1947; Toussoun et al. 1960). Nitrogen deficiencies

may inhibit chlamydospore maturation and stimulate spore lysis (Griffin
1970a, 1976).
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Incorporation of plant residues with high carbon/nitrogen (C/N) ratios
have sometimes reduced Fusarium disease severity (Maurer and Baker 1965).
At high C/N ratios, available nitrogen may be immobilized and disease severity
lessened (Mauer and Baker 1965; Wall 1984). Carbohydrates, such as sucrose
and dextrose, have generally reduced disease by restricting chlamydospore
formation and enhancing spore lysis (Sequeira 1962). Acids from pine needles
may also reduce disease by enhancing chlamydospore germination and lysis in
the absence of susceptible host material (Hammerschlag and Linderman
1975).

Incorporating green manure crops such as oats, rye, and red clover
before sowing may result in increased disease levels in conifer seedlings (Wall
1984). Any green manure crop is potentially damaging if incorporated into soil
immediately before planting, even those of Brassica spp. which were grown for
their potential for disease control (James et al . 1996). Peat and sawdust as
sources of organic matter are less detrimental than green manure crops (Wall
1984). If green manure crops are used, fallow periods of several months are
recommended before conifer seed are sown (Griffin and Pass 1969).

High levels of potassium fertilizer have been found to reduce disease
severity, but these effects seem to be related to the balance between potas-
sium and nitrogen in soil (Sadasivan 1965; Stack and Langhaus 1986; Woltz
and Jones 19 81). If nitrogen is in surplus supply over potassium, disease
development may be more severe, and as potassium is supplied, disease
development is inhibited (Walker 1971). Under normal crop production,
adequate levels of both nitrogen and potassium are required; excessive rates
of nitrogen should be avoided (Woltz and Jones 1981).

Relatively low levels of calcium appear more conducive to Fusarium
diseases than normal levels (Corden 1965; Edgington and Walker 1958; Tint
1945; Woltz and Jones 1981), but excessive calcium may increase disease
severity (Spiegel et al. 1987). Cations competitive with calcium, such as
sodium, adversely affect disease resistance in many host plants (Standaert et
al. 1973). Calcium nitrate has been shown to suppress disease (Elmer 1989).

When multiple nutrient deficiencies prevent normal rates of plant
growth, an applied nutrient that partially overcomes growth limitation may
affect disease response. Several Fusarium spp. produce plant toxins (James et
al. 1991); nitrogen stimulated production of trichothecene toxins by F
graminearum Schwabe (Miller and Greenhalgh 1985). By increasing plant
growth, effects of some toxins may be minimized because they become diluted
in plant tissues (Egli 1969). On the other hand, cell membranes from plants
grown at high nitrate dosages were less sensitive to fusaric acid, a toxin
produced by F oxysporum f. sp. lycopersici (Barna et al. 1983).

Control of F oxysporum has been obtained in some horticultural plants
by adjustments of soil acidity and fertility (Woltz and Jones 1981). For
example, sandy soils that were uniformly limed to pH 6.5-7.5 were less
conducive to disease than unlimed soils. This was due at least in part by
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limiting micronutrient availability to the fungus (Jones and Woltz 1967, 1969,
1970, 1972). Investigations have shown that F oxysporum requires 12 nutri-

ents and an organic source of energy for normal growth (Woltz and Jones

1981). These are absolute requirements which, if unsatisfied, will limit
growth, sporulation, pathogenicity, and survival of the fungus (Hendrix and

Toussoun 1964; Saraswathi-Devi 1958; Smith and Snyder 1975; Woltz and

Jones 1968).

Raising pH toward or slightly above neutrality appears to be a common
denominator in cultural control of F oxysporum causing wilt diseases (Griffin

1976; Wilson 1946). These diseases are commonly associated with acidic,
sandy soils rather than heavier soils with higher pH values (Oritsejafor 1986;

Woltz and Jones 1981). These effects may be due to increasing competitive

abilities of bacteria and actinomycetes at higher pH values (Marshall and

Alexander 1960; Woltz and Jones 1981).
Soil micronutrients may be important for Fusarium control since the

fungus is more vulnerable to micronutrient deficiencies than host plants

(Woltz and Jones 1981). Some work has shown that boron deficiency in host
plants may increase disease severity (Keane and Sackston 1970). Guerra and
Anderson (1985) found that iron and boron deficiencies resulted in greater

virulence by F solani. A critical amount of iron is required for chlamydospore
production in F. oxysporum (Simeon et al. 1987). The iron may be chelated by
siderophore-producing bacteria and as such may not be available to the

pathogen.
In general, balanced nutrition of nitrogen, phosphorus, and potassium

often results in less disease caused by Fusarium spp. (Walker and Foster

1946). It is when an unbalanced nutrition regime results in either diminished
concentrations of potassium or high concentrations of nitrogen that disease

occurs (Stack and Langhaus 1986; Walker and Foster 1946).

Effects on Phytophthora Disease Severity
Moderate to high balanced fertility has been reported to increase

severity of a number of diseases caused by Phytophthora spp. (Schmitthenner

and Canaday 1983). Effects of nitrogen on Phytophthora diseases vary with
different host-pathogen combinations. There are as many examples of nitrogen
increasing disease severity as there are of the element decreasing disease
severity (Schmitthenner and Canaday 1983). For example, in a disease of

southern pines called littleleaf (caused by P cinnamomi Rands.), heavy
nitrogen fertilization increased disease incidence in New Zealand (Newhook

and Podger 1972). However, in the USA, littleleaf disease was first treated as
a nitrogen deficiency because application of nitrogen fertilizer greatly im-
proved condition of infected trees and halted disease spread (Campbell and
Copland 1954; Hepting et al. 1945; Roth et al. 1948).
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High rates of potassium are generally thought to decrease disease
severity by Phytophthora spp. Conversely, effects of phosphorus on
Phytophthora diseases have been inconsistent (Schmitthenner and Canady
1983). High phosphorus was associated with less late blight disease of

potatoes (caused by R infestans deBary); these effects were the opposite of
those found for nitrogen (Awan and Struchtemeyer 1957; Borys 1966; Herlihy

1970). For littleleaf disease of pine in New Zealand, correction of phosphorus

deficiency halted disease spread and resulted in recovery of diseased trees
(Newhook 1970; Newhook and Podger 1972; Weston 1956), similar to the

effect of nitrogen additions in the USA (Hepting et al. 1945). However, overall,
phosphorus appears to have fewer effects on Phytophthora diseases than other
major chemicals (Schmitthenner and Canady 1983).

Calcium may often have direct effects on some Phytophthora diseases

(Schmitthenner and Canady 1983). For example, suppression of R cinnamomi
disease in Jarrah (Australia) occurred by application of calcium carbonate

(Boughton et al. 1978). However, high calcium had no effect on disease

severity of susceptible Eucalyptus spp., but increased root disease of nearby
tolerant species (Halsall 1980). Although high calcium is one of the character-
istics of soil suppressive to R cinnamomi (Broadbent and Baker 1974), in

general, high calcium increases severity of Phytophthora diseases
(Schmitthenner and Canady 1983).

Micronutrients may be important in influencing Phytophthora disease

severity. However, effects of most micronutrients have not been evaluated.
Boron added to a complete fertilizer reduced disease severity of R cinnamomi
in pine (Roth et al. 1948). However; addition of heavy metals was ineffective

in disease control.

High pH usually results in more severe disease caused by Phytophthora
spp. (Schmitthenner and Canady 1983). Application of sulfur to reduce soil pH

has been quite effective in controlling some Phytophthora diseases. For
example, diseases caused by R cinnamomi are controlled when soil pH is
below 3.8 (Bingham and Zentmyer 1954). Of course, lowering pH with sulfur

can only be used when acid-tolerant plants are grown. In most cases, conifer

seedlings should do well in acidic environments. Therefore, lowering pH may
be a practical way to reduce Phytophthora diseases in forest nurseries.

For controlling Phytophthora diseases, five factors involving chemical

nutrition should be considered (Schmitthenner and Canady 1983):

1. Incorporate high rates of organic nitrogen before planting to stimulate

toxicity of ammonia and nitric acid to Phytophthora propagules in soil.

These chemicals may cause inactivation or lysis of pathogen propagules

(chlamydospores, oospores and zoospores) in soil so that by the time of
planting, pathogen populations will be greatly reduced.

2. Reduce soil pH to below 4.0 in fields used to grow acid-tolerant plants.

Additions of sulfur to reach this desirable pH may be necessary.
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Conclusions

3. Reduce soil pH to below 5.0 in high-aluminum soil for aluminum-tolerant
plants.

4. Apply deficient nutrients judiciously to optimize uptake by host plant root
systems that may be diseased by Phytophthora spp.

5. Avoid indiscriminate overfertilization in attempts to maximize productiv-
ity. Although manures, composted sludge, plant residues, or agricultural
waste material may be good sources of organic matter, they may provide
nutrients that enhance populations of potentially-pathogenic soil, thus
disrupting microorganism balances in soil. This may result in greater
disease because of increases of pathogens relative to competitors.

Disease-causing organisms in soil respond to changes in nutrients
provided by amendments of fertilizer and organic materials. Some specific
nutrients stimulate pathogen populations, thus increasing potential disease,
whereas others may reduce populations and potential disease. Relationships
among different nutrients probably are as important as the amount of an
individual nutrient added. Also, the relative amount of particular nutrients
used by crop plants in relation to amounts added is also important. In general,
additions of just enough fertilizer required by seedlings is best. Providing too
much may cause problems with disease organisms and potential leaching into
groundwater.

Probably no single characteristic of soil is more significant to disease
severity than pH (Chapman 1970). Solubility and availability of many chemi-
cals are strongly influenced by soil pH. For example, initial effects of soil
acidification are usually to increase solubility of calcium, magnesium, sodium,
and phosphorus, as well as zinc, manganese, boron, lithium, copper, iron,
nickel, and other elements. Substantial amounts of nitrite accumulate under
neutral and alkaline soil conditions whenever a significant amount of ammonia
or ammonium ion is present; nitrites accumulate and may persist for several
months before being converted to useable nitrates (Chapman and Liebig 1952).

Growers need to carefully monitor disease and make sure that fertilizer
regimes do not aggravate diseases. Excessive fertilization may not only be
detrimental to seedling crops, but may aggravate disease by providing nutri-
ents for buildup of soil-borne pathogen populations. Therefore, careful control
of fertilization regimes should be an important part of integrated pest manage-
ment programs in forest nurseries.
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